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In a recent paper Gompper and Goos [Phys. Rev. E 50, 1325 (1994)] use the random-interface ap-
proach to discuss film scattering from sponge and microemulsion phases. We show that their calcula-
tions of the film scattering lack the integration measure so that subsequent conclusions about the
random-level-surface model have to be revised. Furthermore we find in contrast to that paper that a
sponge-lamellar transition in the random-interface approach is possible.

PACS number(s): 82.70.—y, 05.40.+j, 61.20.Gy

In a recent paper Gompper and Goos discuss level sur-
faces in random fields and their applicability as models
for fluctuating amphiphilic systems such as sponge and
microemulsion phases [1]. The authors claim that their
calculations show that the variational model which is the
basis for the random-interface model of microemulsions
and sponge phases [2,3] (a) does not produce a peak in
the film scattering signal at nonzero wave vector k and is
therefore a doubtful description of bicontinuous phases
[*...the variational approach is unable to produce a
peak of the scattering intensity in film contrast at finite
wave vector k. This is a serious deficiency of the Gauss-
ian model. It shows that level surfaces of Gaussian ran-
dom fields do not accurately describe the structure of
bicontinuous microemulsions.” (italics by the authors of
[1])], (b) does not lead to a sponge to lamellar transition
(““. . .the variational approach fails ... for the phase
transition between microemulsion and lamellar phase.”).

We believe (as will be shown in this Comment) that
these points and the subsequent conclusions are in error.
Point (a) is based on an inconsistent approximation for
the film scattering. The correct calculation of the film
scattering results in the arctangent form for the scatter-
ing at small wave vector and indicates that a peak at
finite wave vector can emerge, in agreement with experi-
ment. The lack of a spinodal, (b), is not an indication of
the correctness of a given theory; it merely indicates that
the transition is first order, again, in agreement with ex-
periment. As a matter of fact, the variational formula-
tion of the random surface model which has a clear ener-
getic basis (the bending Hamiltonian) and is not based on
a purely phenomenological low wave vector free energy
expansion predicts a first order sponge-lamellar transition
without adjustable parameters.

First, Gompper and Goos adopt an analytic method to
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calculate the film-film correlation function for a continu-
ous bulk order parameter field, ¢(7), by the correlation of
different regions of the film around level surfaces at
¢(7)=0. This concept is due to Berk [4] and was further
elaborated by Teubner [S], Berk [6], Pieruschka and
Margelja [2], and Chen, Lee, and Chang [7] in the context
of the effective interface description of amphiphilic sys-
tems which assumes that all the surfactant is located at
the water-oil (inside-outside) interface. Gompper and
Goos base their calculation on the film-film correlation
function

Gam(r)~ (8(4(0))8(4(r))) . (1)
The correct formula, however, should read
Gam ()~ { |V$(0)|8(4(0))|Vo(r)|6(g(r))) . (2)

The gradient terms in Eq. (2) are necessary for the correct
integration measure. It is possible to see the necessity of
gradient terms, if one considers the correct formula for
the area of the interface which was derived by Teubner

(5]
S/V=,|ve|a(¢)) . 3

As a matter of fact, the authors used this formula for the
area, S /V, correctly incorporating the area measure but
did not include the area factor in the film correlation
function—which is thus inconsistent.

While in Eq. (1) the correlation matrix in the Gaussian
exponent is of order 2X2 and contains the bulk correla-
tion function g (r) only, so that G, (#)=Gg,,(g(r)), the
correct correlation matrix is of order 8 X8 and involves
major contributions from the gradient terms so that
Ggm(r) = Gy (g(r),dg(r)/3r,d%g(r) /3r2,r ~19g(r)/dr).
The correct calculation of the film scattering is rather
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complex [5,8,9] and results in the limit of large r and bulk
symmetry in a linear combination of terms [9]
g%(r),g3(r),g%(r) where approximately
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This leads (for real k) to contributions which are
proportional to exp[ —2& 'r]/(kor)?, exp[—2£7'r]/
(kor)’sin[2kor], and exp[—2£7'r]/(kyr)cos[2k,r].
The Fourier transform of the first term leads approxi-
mately to

Ggm(k)~const+k ™~ 1arc:tan-% 4)

in the low-k regime. The functional arctangent form at
low k is well established in experiments and Ginzburg-
Landau theory of L; phases [10]. (The Fourier trans-
forms of the second and third term are insignificant at
low k. For intermediate k they show a step and peak
shape, respectively, for sufficiently large ko at k ~2k,.
For small ky§ or imaginary k, these irregularities at 2k,
vanish.) For intermediate k no simple analytical approxi-
mation exists. Scattering can then be either calculated by
numerical evaluation of Eq. (2) or by approximate numer-
ical treatment based on real-space representations, Eq. (7)
(cf. below). The latter indicates in the limit of large
correlation length £7!—0 a peak at 2ky in the film
scattering. While we do not argue here that the film
scattering structure factor given by the random-interface
model can provide perfect fits to experimental data it is
clear from the above that the film scattering calculated in
[1] is based on an unsatisfactory formulation of the corre-
lation function. The subsequent conclusions about the
validity of the random surface model are therefore
unwarranted.

In their numerical evaluation of the film scattering sig-
nal Gompper and Goos assume that the film-film correla-
tion function is given by the average [Eq. (6) in [1]]

Giiim (1)~ (84(0))8(4(r))) , (5)

where 8,=¢~! for —e/2<x <e€/2 and zero otherwise.
They assume that the level cuts at +e/2 delineate a
“. . .thin layer of [physical] thickness € around the $=0
surface.” This, however, is not quite correct, because
Gaussian random fields do not support a parallel family
of surfaces [2]. Equation (5) describes scattering from a
film with nonuniform thickness. Gradient terms account
for the fact that the value of ¢ located at a distance +e/2
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along the normal from the surface of ¢=0 varies in
space. Taylor series expansion about the surface at =0
shows that the film enclosed by the surface at a distance
€/2 from ¢=0 is given by

#(r) < §|V¢(r>l 6)

and the correlation function should read [8]
Gpim (r) ~Prob | [4(0)] < Z[V4(0)], |6(r)| < Z|Vg(r)] | ,

)

where the gradient terms correct nonuniform film thick-
ness in first order. [We have to emphasize, however, that
while Eq. (7) comes much closer to a correct description
of a film with constant physical thickness than the
method used in [1], Eq. (7) still does not implement a per-
fect description of such a film. However, in the limit
€—0 the rigorous result Eq. (2) in retrieved.] Hence all
numerical results concerning film scattering (even con-
cerning Ginzburg-Landau simulations) in [1] are done for
films of nonuniform thickness and should be revised, if
they are to give reliable information on film scattering
from uniformly thick films (as erroneously stated in [1]).
A justification for using Eq. (5) can only be given by argu-
ing that in Ginzburg-Landau models the surfactant does
not have to be concentrated on a sharp interface [11].
This, however, was not discussed in [1].

Second, the statement concerning the failure of the
variational approximation to yield a sponge-lamellar
transition has no formal basis (“Much to our surprise no
such spinodal exists.”). In fact, the lamellar to sponge
transition is first order in microemulsions and L, phases.
There is no requirement for a second order transition or
spinodal between the sponge and lamellar phase. Hence
the absence of a spinodal is by no means a proof of the
failure of a model to predict a phase transition. Indeed,
we have recently shown that the variational formalism
leads to a first order sponge-lamellar transition upon in-
crease (decrease) in bending (saddle-splay) modulus or
surfactant concentration [12].

We believe (as shown in this Comment) that two of the
major conclusions of the paper [1] by Gompper and Goos
are based on erroneous assumptions and calculations. In
fact, one can show that the random-interface model
correctly predicts the arctangent form of the film scatter-
ing for small wave vector as seen in many experiments
[10]. Approximate numerical calculations [based on Eq.
(7)] also indicate a peak at finite wave vector for large,
scaled correlation length ky£. Finally, the random-
interface model is able to consistently predict a sponge-
lamellar transition in agreement with experiment.

We would like to thank G. Gompper for useful discus-
sions and critical comments, and M. Teubner for giving
us details concerning the film scattering in [5].
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